A SYNTHESIS OF PROSTAGLANDIN $F_2\alpha$ (PGF₂ α)

Tadao TANOUCHI, Seiji KORI, and Masaki HAYASHI*

Research Institute, Ono Pharmaceutical Co., Ltd.,

3-1-1, Sakurai, Shimamoto-cho, Mishima-gun, Osaka 618

 $PGF_2\alpha$ <u>15</u> was synthesized via the δ -lactone aldehyde <u>2</u>, which is much more stable than the Corey's aldehyde 1.¹⁾

Although the γ -lactone aldehyde $\underline{1}$ has now been demonstrated to be one of the most versatile key intermediate for prostaglandin synthesis, $\underline{1}$) the extreme thermolabilities for $\underline{1}$ made this route very difficult for the actual execution. We wish to report herein a new route to prostaglandins through the δ -lactone aldehyde $\underline{2}$, which is much more stable and easy to handle. $\underline{2}$)

Successive treatment of the acetate $\underline{3}$ with (1) potassium carbonate in methanol, (2) dihydropyran and p-toluenesulfonic acid in methylene chloride, (3) 4N-sodium hydroxide in methanol and careful neutralization, (4) diazomethane in ethyl acetate (-78°C), (5) benzoyl chloride and pyridine in methylene chloride, afforded the acyl ester $\underline{7}^{3}$ in 86% over-all yield.

Saponification of $\frac{7}{2}$ with 1N-sodium hydroxide in methanol at room temperature gave the acid $\frac{8}{3}$ and the recovered acid 6^{3} in 44% and 36% yield, respectively.

Hydrolysis of $\underline{8}$ with lN-hydrochloric acid in tetrahydrofuran followed by lactonization of $\underline{9}$ with p-toluenesulfonic acid in benzene gave the δ -lactone $\underline{10}^{3}$, $\underline{4}$ in 83% yield. The hydroxy compound 13 was obtained by successive treatment of 10 with (1) boron tribromide in methylene

- (6) $R^1 = H$, $R^2 = THP$, $R^3 = H$
- (7) $R^1 = CO\emptyset$, $R^2 = THP$, $R^3 = CH_3$
- (8) $R^1 = CO\emptyset$, $R^2 = THP$, $R^3 = H$
- (9) $R^1 = CO\emptyset$, $R^2 = H$, $R^3 = H$

- (12) X = 0, Y = 0, $R^1 = CO\emptyset$
- (13) X = 0, $Y = CO\emptyset$
- (14) $X = \{ \{ \{ \} \}^H, Y = \{ \{ \} \}^H, R^1 = H \} \}$

chloride, (2) Collins reagent in methylene chloride, (3) sodium hydride and dimethyl 2-oxoheptyl-phosphonate in tetrahydrofuran, $^{5)}$ (4) sodium borohydride in methanol, in 61% over-all yield from $\underline{10}$.

Diisobutylaluminum hydride reduction of $\underline{13}$ in toluene gave the hemiacetal $\underline{14}^{3)}$ (86% yield after column chromatography on silica gel), which was converted into $PGF_{2}\alpha$ $\underline{15}^{6)$,7) by Wittig reaction with 4-carboxy-n-butylidene triphenylphosphorane (5 equiv.) in dimethyl sulfoxide in 26% yield after column chromatography on silica gel. 15-Epi- $PGF_{2}\alpha$ was obtained in 24% yield together with $PGF_{2}\alpha$.

Reference and Footmotes

- E. J. Corey, T. K. Schaaf, W. Huber, U. Kolliker, and N. M. Weinshenker, J.Amer.Chem.Soc., 92 397 (1970).
- 2) The aldehyde <u>2</u> was stable after concentration by rotary evaporator (bath temp. 30°C) and standing overnight at +20°C. This stability will make industrial production of PGs very easy.
- 3) Ir and nmr spectra were in agreement with the assigned structure.
- 4) Ir absorption of 1740 cm⁻¹ shows δ -lactone.
- 5) Only the trans isomer was obtained.
- 6) The 5,6-cis isomer was formed stereoselectively.
- 7) Ir and nmr spectra, R_f values on tlc and the biological activity were completely identical with those of the authentic sample.

(Received April 19, 1976)